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Spin spirals in underdoped La,_Sr,CuO,4 and YBa,Cu30g,,: Differences and similarities
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Contrary to a widely accepted view the phase diagrams of La,_.Sr,CuO, (LSCO) and YBa,Cu30¢,,
(YBCO), in spite of similarities are remarkably different. Both the electric conduction properties and the
commensurate/incommensurate spin ordering properties differ dramatically. It is argued that the role of disor-
der in YBCO is insignificant while the bilayer structure is crucial. On the other hand in LSCO the intrinsic
disorder to a large extent drives the properties of the system. The developed approach explains the low-
temperature magnetic properties of the systems. The most important point is the difference with respect to the
incommensurate spin ordering, including the difference in the incommensurate pitches. The understanding of
mechanisms for the differences provides a deep insight into generic physics of the systems.
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I. INTRODUCTION

In early days of high-temperature superconductivity there
was a belief that the phase diagram of La,_,Sr,CuO, (LSCO)
represents a generic phase diagram of cuprate superconduct-
ors. Nowadays it has become clear that, in spite of similari-
ties, there are very important differences between different
cuprates. LSCO and YBa,Cu;0¢,, (YBCO) are the best ex-
perimentally studied compounds in the low-doping regime.
This is why the present work addresses these compounds. In
LSCO the doping level of CuO, planes p practically coin-
cides with Sr concentration, p = x, while in YBCO, because
of the partial filling of oxygen chains, the doping level is
different from the oxygen concentration y. In LSCO doping
gives way to superconductivity at p>p,~0.055 and in
YBCO at p>p,.=~0.065, see Fig. 1. At first sight this indi-
cates full similarity. However, I will argue that the mecha-
nisms behind p,. in those two compounds are different and
the closeness of the two values of p, is purely accidental. An
important observation is that the normal-state electrical resis-
tivities at p <p,. are very much different. At low tempera-
ture, 7= 100 K, and at doping below the superconductivity
threshold, the in-plane resistivity of LSCO exhibits!? the
Mott variable-range hopping regime pexp{(7T,/T)"}. This
indicates strong localization of holes in the Néel and the
spin-glass regions of the LSCO phase diagram. These are the
regions la and 1b in Fig. 1. On the other hand, the in-plane
resistivity in YBCO at p <p,. shows only logarithmic depen-
dence on temperature, poIn(C/T), indicating weak-
localization regime.>* This is region 1 on the YBCO phase
diagram, Fig. 1. For example, at p~0.04 the in-plane resis-
tivity of LSCO is about five times larger than that of YBCO
at T=10 K, and the same ratio is about 1000 at 7=1 K.
Thus, role of disorder in LSCO below the superconductivity
threshold is crucial while in YBCO the disorder is a rela-
tively minor issue.

The magnetic properties of the compounds are also very
much different. The three-dimensional antiferromagnetic
(AF) Néel order in LSCO disappears at doping p=0.02 and
gives way to the so-called spin-glass phase. The incommen-
surate magnetic order has been observed at low temperature
in neutron scattering. This order manifests itself as a scatter-
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ing peak shifted with respect to the AF position. The incom-
mensurate scattering has been observed even in the Néel
phase where it coexists with the commensurate one. In the
Néel phase, the incommensurability is almost doping inde-
pendent and directed along the orthorhombic b axis.> In the
spin-glass phase, the shift is directed along the b axis, and
scales linearly with doping.® In the underdoped supercon-
ducting region (0.055=<p=0.12), the shift still scales lin-
early with doping but it is directed along one of the crystal
axes of the tetragonal lattice.” In YBCO the commensurate
three-dimensional AF order exists up to p~0.065, see Fig. 1.
Moreover, there are indications that there is a narrow win-
dow around this doping where superconductivity and the
commensurate AF order coexist.® Recently the incommensu-
rate quasistatic spin ordering along the tetragonal a* direc-
tion has been observed within the superconducting phase of
YBCO (Refs. 9 and 10) at doping p=0.085. The ordering
becomes fully dynamic above p~0.1."" Last, but not least,
the observed incommensurate wave vector in YBCO at p

0 0.05 0.1 p

FIG. 1. (Color online) Schematic low-doping and low-
temperature phase diagrams of LSCO and YBCO. LSCO: (1a) AF
order coexists with diagonal incommensurate spin structure and
strong localization of holes. (1b) Diagonal incommensurate spin
structure and strong localization of holes. (2) Parallel incommensu-
rate quasistatic spin structure and superconductivity. (3) Parallel
incommensurate dynamic spin structure and superconductivity.
YBCO: (1) AF order and weak localization of holes. (2) Parallel
incommensurate quasistatic spin structure and superconductivity.
(3) Parallel incommensurate dynamic spin structure and
superconductivity.
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FIG. 2. Dispersion of a single hole in a Mott insulator is similar
to that in a two-valley semiconductor.

~0.085 (Refs. 9 and 10) is of a factor of two smaller than
the incommensurate wave vector in LSCO at the same
doping.” On the other hand, at p~0.12 the incommensurate
wave vectors in LSCO and YBCO are equal.’-!!

The phase diagram of underdoped LSCO has been ex-
plained in Refs. 12—-14. The generic physics is based on the
spin spirals. On the other hand a number of particular details
of the LSCO phase diagram are driven by disorder. In
YBCO, according to data on conductivity, the role of disor-
der is practically insignificant. This is quite natural since the
doping mechanism in YBCO is different from that in LSCO.
Therefore, having the same generic physics both compounds
have different phase diagrams. The purpose of the present
work is to explain the phase diagram of YBCO. In particular
the following two most important issues are addressed. (1)
Why does the AF order survive in YBCO up to a very large
hole concentration p=0.06—0.07? (2) Why is the pitch of
the incommensurate spin order in YBCO different from that
in LSCO? It will be demonstrated that both these issues are
closely related and they are due to interlayer hopping in
YBCO.

II. DISORDERED SPIN SPIRAL IN LSCO, x <0.055

To understand differences and similarities between LSCO
and YBCO, and hence to separate generic physics from ma-
terial specific details, it is appropriate to summarize here
briefly ideas of the approach!>!* to LSCO. Dispersion of a
single hole injected in a Mott insulator has minima at points
(£7r/2, £7/2) as it is shown in Fig. 2. It is similar to the
dispersion in a two-valley semiconductor. At low tempera-
ture, 7=100 K, and at doping p<<0.055 each hole is
trapped in a hydrogenlike bound state near the corresponding
Sr ion. The bound state can be built both with a hole from the
a valley and with a hole from the b valley. Position of the Sr
ion is above center of the Cu plaquette. Therefore energy of
a hole residing on sublattice with spin up is the same as
energy of a hole on sublattice down. Thus, in a perfect square
lattice the “hydrogen” ground state is fourfold degenerate,
two valley X two sublattice. In the real LSCO there is a
small orthorhombic distortion of the lattice. Hence the valley
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FIG. 3. (Color online) Distortion of the staggered spin fabric
(small arrows) by the Sr-hole bound state. The left picture corre-
sponds to the pseudospin directed out of the page and the right
picture corresponds to the pseudospin directed in the page. Shaded
area corresponds to the hole localization region. At large distances
spins are directed along the orthorhombic b axis.

degeneracy is lifted and the b valley has lower energy.'>!

The sublattice degeneracy creates a frustration and hence a
possibility to mix the hole states on different sublattices. It is
convenient to describe the mixing using notion of pseu-
dospin. The pseudospin is 1/2 since there are two sublattices.
Solution of the single hole bound-state problem'? demon-
strates that the spin fabric is distorted in a local spiral shown
in Fig. 3. Staggered spins are shown in accordance with no-
tations of the o model. The static spin distortion is always
perpendicular to the pseudospin and decays «1/r at large
distances. The local spin spiral is directed along the nodal
direction corresponding to the valley of the hole, the b direc-
tion in Fig. 3. A finite concentration of Sr-hole bound states
gives a ground state shown in Fig. 4. A particular random
realization of Sr positions with concentration x=0.05 is pre-
sented. In Fig. 4 the 7 field (small arrows) representing stag-
gered Cu spins is arbitrarily put in the ab plane. This is done
to have the planar picture of the state. However, it is impor-
tant to stress that without account for the Dzyaloshinski-
Moriya and the XY anisotropies the plane of the coplanar
spin configuration can be arbitrary. Recent neutron-scattering
data at x=0.05 indicate that the static spins are in the bc
plane.!”

Fourier transform of the spin distribution shown in Fig. 4
gives the static spin structure factor

Sq = 2 VT (x)nf(r;). (1)
LJ
The calculated static spin structure factor on a sample with
doping x=0.04 is shown in Fig. 5 together with experimental
data taken by Fujita et al.

Thus, the state of LSCO at 0.02<p<0.055 is not a
simple spin glass, it is a disordered spin spiral. Both the
lower and the upper boundaries of this region are determined
by the size of the bound state. The upper boundary, p
=0.055, is a percolation point of isolated bound states. After
the percolation the superconductivity becomes possible, and
simultaneously direction of the spin spiral must rotate by
45°. The rotation is driven by the Pauli principle. To under-
stand the mechanism of the rotation it is instructive to look at
Fig. 6. Below the percolation point every hole is trapped in a
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FIG. 4. (Color online) Disordered spin spiral: characteristic
ground-state configuration of a particular realization of Sr positions
at x=0.05. The horizontal direction coincides with the orthorhombic
b axis and the vertical direction coincides with the orthorhombic a
axis. The bound states pseudospins are oriented perpendicular to the
plane of spins (in this case the plane of the picture). Open circles
correspond to pseudospin direction out of the plane while full
circles correspond to pseudospin direction into the plane. Small
arrows represent staggered spins. The system forms domains
stretched along the orthorhombic a direction, in which all the pseu-
dospins are aligned in parallel.

bound state near its Sr ion. Wave functions of different holes
do not overlap and hence the Pauli principle is not important.
In this situation all the bound states reside in the b valley
since, due to the orthorhombic deformation, the b valley is
slightly lower than the a valley.'>!> The population is shown
in left of Fig. 6. Because of the population the wave vector
of the spin spiral is directed along the b direction. After the
percolation, p>0.055, holes are delocalized in space and
hence the Pauli principle is important. The system reduces
the Fermi motion kinetic energy by splitting holes between
the pockets, as it is shown in right of Fig. 6. Holes in the a
pocket “want” the spin-spiral wave vector along the a diag-
onal and holes in the b pocket want the spin-spiral wave
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FIG. 5. Neutron scattering probability S, for x=0.04. Full
circles correspond to experimental observations taken from Fig. 4 in
Ref. 6, with normalized intensities. The curve represents our simu-
lation, containing no fitting parameters.

PHYSICAL REVIEW B 79, 174519 (2009)

\<
.

FIG. 6. Redistribution of holes in LSCO at the percolation point.
The left picture corresponds to the localized regime, p<<0.055,
where holes reside in the b valley. The right picture corresponds to
the delocalized regime, p >0.055, where holes split 50/50 between
the a and b valleys.

—T

vector along the b diagonal. The compromise is (1,0) or (0,1)
direction. This explains the rotation of the spin-spiral direc-
tion exactly at the percolation point. Simultaneously the per-
colation gives a way to superconductivity.

The role of disorder in LSCO at p>0.055 is only mar-
ginal. Here the spin-spiral state suggested by Shraiman and
Siggia'® is realized. Most importantly, the state is supercon-
ducting and the spin spiral becomes dynamic at p>0.11."3

III. LSCO AT x>0.055. THE SPIN SPIRAL IN
UNIFORMLY DOPED SINGLE CuO, LAYER

In this section we disregard the disorder. The analysis of
the single CuO, layer with or without disorder is based on
the two-dimensional 7-t'-f"-J model at small doping. After
integrating out the high energy fluctuations one comes to the
effective low-energy action of the model.'® Importantly, the
integration of the high energy fluctuations is a fully con-
trolled procedure; the small parameter justifying the proce-
dure is the doping level, p << 1. The effective low-energy La-
grangian is written in terms of the bosonic 7 field (n*>=1) that
describes the staggered component of the copper spins, and
in terms of fermionic holons ¢. I use the term “holon” in-
stead of “hole” because spin and charge are to large extent
separated, see Ref. 18. The holon has a pseudospin that origi-
nates from two sublattices so the fermionic field ¢ is a spinor
acting on pseudospin. Minimums of the holon dispersion are
at the nodal points qy=(*= /2, = 7/2). So, there are holons
of two types (=two flavors) corresponding to two pockets.
The dispersion in a pocket is somewhat anisotropic but for
simplicity let us use here the isotropic approximation, e(p)
~%Bp2, where P=q—qo. The lattice spacing is set to be
equal to unity, 3.81 A—1. All in all, the effective Lagrang-
ian reads'®

L= %ﬁz - %(Vﬁ)2 +2 {é[dfiﬂ?t%— (Dihe) ]

- W;E(P) ¢a+ \”Eg(lpz&lpa) : [ﬁ X (ea ' V)ﬁ]} . (2)

The first two terms in the Lagrangian represent the usual
nonlinear o model. The magnetic susceptibility and the spin
stiffness are y, =0.53/8~0.066 and p,~0.18.!° Hereafter
the antiferromagnetic exchange in the initial #-J model is set
to be equal to unity, /=130 meV — 1. Note that p, is the
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bare spin stiffness; therefore by definition it is independent
of doping. The rest of the Lagrangian in Eq. (2) represents
the fermionic holon field and its interaction with the 7 field.
The index a=a,b (flavor) indicates the pocket in which the
holon resides. The pseudospin operator is %5’, and e,
=(1/\2, 1/ \E) is a unit vector orthogonal to the face of
the magnetic Brillouin zone , where the holon is located. A
very important point is that the argument of €, in Eq. (2) is a
“long” (covariant) momentum,

1

An even more important point is that the time derivatives
that stay in the kinetic energy of the fermionic field are also
long (covariant),

iL o -
D,:&,+50'-[n X n].

An effective Lagrangian similar to Eq. (2) was suggested
long time ago by Shraiman and Siggia.'® However important
covariant time derivatives were missing in their approach.
The simplified version'® is sufficient for semiclassical analy-
sis of the system. However, the full version (2) is crucial for
the excitation spectrum, quantum fluctuations, and especially
for stability of the semiclassical solution with respect to
quantum fluctuations. It is worth noting that the covariant
derivatives in Eq. (2) are a reflection of the gauge invariance
of the initial 7-¢'-¢"-J model. Another important note is that
effective Lagrangian (2) is valid regardless of whether the 7
field is static or dynamic. In other words, it does not matter if
the ground-state expectation value of the staggered field is
nonzero, (1) # 0, or zero, {(n)=0. The only condition for va-
lidity of Eq. (2) is that all dynamic fluctuations of the 7 field
are sufficiently slow. The typical energy of the n-field dy-
namic fluctuations is E,.* p>'%, see Ref. 18, and it must be
small compared to the holon Fermi energy e€r>p. The in-
equality E . <<€p is valid up to optimal doping, p=0.15.
So, this is the regime where Eq. (2) is parametrically justi-
fied.

Numerical calculations within the #-¢'-"-J model with
physical values of hopping matrix elements give the follow-
ing values of the coupling constant and the inverse mass, g
=~ 1, B=2.2. Note that B is the inverse mass of the holon and
the value B=2.2 corresponds to the effective mass

m*=1.8m,. (3)

To describe LSCO at the very low doping, p <0.055, one
needs to add to Eq. (2) a disordered random potential pro-
duced by Sr ions. The potential leads to the strong localiza-
tion of holes as it is described in the previous section. The
strong localization greatly simplifies the problem because
charge degrees of freedom are frozen. Therefore the solution
described in the previous section is not sensitive to the fine
theoretical details such as covariant derivatives in Eq. (2). In
other words the gauge invariance is not an important issue in
the strongly localized regime.
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0.I5 p 02

FIG. 7. The static component of spin versus doping at zero
temperature. The point p=0 corresponds to the pure Heisenberg

model where (S)=0.303.

The uniformly doped regime which is relevant to LSCO
at p>0.055 is much more complicated. It requires the full
scale theory. The dimensionless parameter,
2g°

mBps

plays the defining role in the theory.'"® If A=<1, the ground
state corresponding to Lagrangian (2) is the usual Néel state
and it stays collinear at any small doping. If | =N=2, the
Néel state is unstable at arbitrarily small doping and the
ground state is a static or dynamic spin spiral. The pitch of
the spiral is

A

(4)

0=5p. (5)

s

If A =2, the system is unstable with respect to phase separa-
tion and/or charge-density-wave formation, and hence the
effective long-wavelength Lagrangian (2) becomes meaning-
less. By the way, the pure t-J model (¢'=¢"=0) is unstable
since it corresponds to A >2.

To find experimental value of the coupling constant g it is
sufficient to compare Eq. (5) with the pitch of the observed
incommensurate spin structure at 0.055<p<<0.12. This
gives g=1 in a very good agreement with the prediction of
the #-¢'-1"-J model. Analysis of neutron inelastic-scattering
data performed in Ref. 18 gives the value of inverse mass,
B=2.7. This also agrees reasonably well with the prediction
of the #-t'-#"-J model. Using values of g and 3 found from fit
of experimental data, one obtains that for LSCO

A = 1.30. (6)

Whether the spin spiral is static or dynamic depends on
the doping level. Calculations'® for uniformly doped single-
layer #-t’'-t"-J model with parameters corresponding to

LSCO show that the static component of spin S vanishes at
p=0.11 as it is shown in Fig. 7. This is a quantum critical
point. At the higher doping the spin spiral is purely dynamic.
As it has been already pointed out one can compare Fig. 7
with data on LSCO only at 0.055<p<0.12 where role of
disorder in the real material is only marginal. At the lower
doping the theory described in Sec. II is relevant.
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IV. DOUBLE LAYER SPIN SPIRAL IN YBCO

The picture described in Secs. II and III, and based on the
spin spirals explains qualitatively and quantitatively details
of the underdoped LSCO phase diagram. To confirm the ge-
neric physics based on the spin spirals, one needs to explain
also the phase diagram of underdoped YBCO. How is the
described above physics changed in case of YBCO? It is well
known that while LSCO contains a single CuO, layer per
elementary cell YBCO contains two CuQO, layers. Due to the
bilayer structure the magnon spectrum in YBCO is split into
acoustic and optic modes.?’ The optical gap is about 70 meV.
This is substantially smaller than the maximum magnon en-
ergy ~2J~260 meV. Therefore, the bilayer structure can-
not substantially influence values of the effective coupling
constant g and the inverse mass 8 which are due to magnetic
fluctuations with the typical energy scale ~2J. So, one
should expect that values of these parameters in YBCO are
close to that in LSCO. The holon dispersion in YBCO is split
into bilayer bonding and antibonding branches

A 2
€ra= ¢E+ﬁ”3. (7)

It is worth noting that for a perfect square lattice value of the
nodal splitting A must be equal to zero, see discussion in
Ref. 21. On the other hand both the Local-Density Approxi-
mation (LDA) calculation?! and the Angle Resolved Photo-
emission Spectroscopy (ARPES) measurements®? indicate a
nonzero band splitting A~ 100 meV at nodal points. Most
likely the splitting is due to the hole hopping via the inter-
layer oxygen chain sites.”® The splitting A brings additional
nontrivial physics in the system. In the present work A is
used as a fitting parameter.

Let us impose the coplanar spiral configuration on the
system

ny=(cosq-r, sinq-r, 0),

ny=—(cosq-r, sinq-r, 0), (8)

where q is directed along the CuO bond [q>(1,0) or q
(0, 1)]. Here 1, and 71, correspond to the two layers. Note
that 77, and 72, remain antiparallel at any given point r; hence
there is no admixture of the optic magnon to the ground-state
configuration. In the spiral background [Eq. (8)] the single
holon energy spectrum is of the form

A 2
f(p)=igqi5+ﬁ%, )

where the first term is the spiral splitting caused by the
\2go[n X (e, V)n] interaction in Eq. (2), the second term is
the bonding-antibonding splitting, and the third term is the
usual kinetic energy. The four branches of dispersion (9) are
shown schematically in Fig. 8. Populations of the four bands
depend on the doping level p and on the spiral wave vector
q. To find the equilibrium value of ¢ one needs to calculate
the ground-state energy at a given doping p and pitch ¢, and
then find minimum of the energy with respect to ¢g. In the
leading doping approximation only three terms from Eq. (2)
contribute to the ground-state energy: the spin-elastic term
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FIG. 8. Schematic dispersion of a holon. b and a corresponds to
bonding and antibonding branches, and * corresponds to the spiral
splitting.

pg)portional to the spin stiffness p,, the “spiral term”
\2ga-[nX (e, V)n], and finally the Fermi motion energy.

When calculating energy, one has to remember that there
are two CuQO, planes in the unit cell. Therefore, the spin-
elastic energy per unit area is 2 X p,g>/2, and the hole den-
sity per unit area is 2p. It is convenient to define the follow-
ing characteristic concentration

_A
- =

A straightforward calculation shows that there are three dis-
tinct regimes dependent on the doping:

Po (10)

(1) py2>p>0,
(2) po>p>py2,

(3) p>po.

In the first doping regime the antibonding a bands (see Fig.
8) are always empty. Hereafter only filled bands are men-
tioned. Both bonding b bands are filled at g < 7—;@17 while at
q> Egép only the band b_ is filled. In the first regime (p,/2
>p>0) the energy is

N, mB B
1-= |+ —p? <=
E ( 2>q P 1 P

E Ps g
P g e e
Yol -2pSg+2—p g>—p
P Py g

It is convenient to introduce the following three wave vec-
tors:

q1=7T—B(po—p),
g

;T_B(@ 13)

+
0 472
=ﬂ3(2_@>
i 272 )

In the second doping regime, po/2<p<p, the bonding
bands b are filled at ¢ <g,, the bands b and a_ are filled at
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q1<9g<q,, and b_ and a_ are filled at ¢ > g,. The energy in this regime reads

;
A B
(1—5>q2+—p2, q<q
E 2 N 5
= =4 (1 —§A>q2+§qql—gﬁ+—p2, 92> 9> q
Ps Ps

L Ps s

2

g 7B p
¢ -2p>q+ p_<P2+PP0— —0), a>q

4

In the third doping regime, p > p,, the bands b. and a. are filled at g <g3, the bands b and a_ are filled at g3 <g<g,, and

b_ and a_ are filled at ¢ > ¢,. The energy in this case reads

2 2
mB(p~ P
(l—k)q2+—(———°+ppo), q<q3
ps\2 2
E 2 2\ 2\ B
— =9 (1——>\)q2——qq3——q§+—p2, 9> 9> q3
Ps 3 3 Ps
2
g 7B p
q2—2p—q+—(p2+ppo——°>, q>q
ps Py 4

\

The minimum of the energy with respect to g gives the
equilibrium spiral pitch Q at a given doping level p. The
minimization shows that the value of Q depends on \. For
1<)\<% the pitch stays zero for p<<p,, then for py<p
<p;, where p;=0.5p,/(\=1), the pitch is

_&P-Po

Q

and finally at p>p, the pitch is given by single-layer for-
mula (5). This behavior is illustrated in Fig. 9 (left).

In the case %< N <2 the spin-spiral pitch stays zero until
the critical concentration pczi(l +v1 —%)po, and then it
jumps to single-layer value (5), see Fig. 9 (right). I would
like to reiterate once more that the considered picture is valid
for both the static and the dynamic spirals. Ultimately, the
spiral always becomes dynamic at p=0.1-0.12, see Ref. 18.

0.15 T 0.15 T
Q 1<A<15 Q 1.5<h<2
2n 2n
0.1 0.1t
0.05F ,,I/ 0.05t
7 B ‘ 0 R, .
(a) 0.05 0.1 p oI5 (p) 0.05 0.1 pO 1

FIG. 9. (Color online) Incommensurate pitch of the spin spiral
versus doping. Left: the regime 1 <A <<1.5. The solid line is the
theory prediction for YBCO, and the parameters are A=1.3 and
Po=0.065. The dashed line is the theory prediction for LSCO. Note
that the theory has no adjustable parameters relevant to the data
presented in this figure. The red circles represent the YBCO
neutron-scattering data from Refs. 9-11. The blue squares represent
the LSCO neutron-scattering data from Ref. 7. Right: theoretical
prediction for the pitch in the double-layer case for 1.5<\<2.

Clearly at %< A <2 the jump at p=p,. is the first-order phase
transition. On the other hand, p, and p; at 1 <A< % are
Lifshitz points.

V. COMPARISON WITH EXPERIMENT

The value of coupling g predicted by the 7-¢'-¢"-J model is
g=1.0; this is a very robust prediction, see Refs. 12 and 13.
The value of the Heisenberg model spin stiffness, p,~0.18,
is known very well;! it is also robust. The value of the
effective mass predicted by the #-t'-#’-J model is m*
=~ 1.8m,, see Eq. (3). The effective-mass prediction is not
robust; the mass value is sensitive to ¢, t', ¢, and to some
other details. With the values of parameters predicted by the
t-t'-t"-J model the dimensionless parameter A, see Eq. (4), is
A= 1.5. This value can be fine tuned using experimental data
on inelastic neutron scattering from LSCO. The fine tuning'®
gives A= 1.3. This value of N corresponds to the effective
mass of the holon m*=1.5m,. The parameter A cannot be
influenced by the relatively weak interlayer coupling; there-
fore the same value should be used for YBCO as well as for
all other cuprates.?* According to Refs. 4 and 8 the AF order
in YBCO extends up to p=0.06-0.07 so we take p,
~(.065. This is the only adjustable parameter of the theory
relevant specifically to YBCO. Having g, p,, A, and p, Eq.
(11) predicts the incommensurate wave vector in YBCO. The
prediction is shown in Fig. 9 (left) by the solid line. The
theory agrees very well with neutron-scattering data shown
by red circles.”!! Using Eq. (10) one finds the value of the
bonding-antibonding splitting, A=70 meV. This is consis-
tent with LDA calculations?! and with ARPES data.?? In the
same Fig. 9 (left) the single-layer theoretical Q(p), Eq. (5), is
shown by the dashed line, and the neutron-scattering LSCO
data’ are shown by the blue squares. All in all the theory
agrees with experimental data for both YBCO and LSCO
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remarkably well. Note that theoretical curves presented in
Fig. 9 (left) have no adjustable parameters relevant to the
experimental data presented in the same figure. The only
adjustable parameter of the YBCO theory, p,, has been de-
termined from different measurements.*3

The developed theory is based on the small-p expansion.
Therefore, it is not surprising that at p >0.12 the experimen-
tal data start to deviate from the theory. Note also that the
single-layer formula (5) is not applicable to LSCO at p
<0.055. The region p<<0.055 in LSCO corresponds to the
strong localization regime and the relevant theory was devel-
oped in Ref. 14.

VI. CONCLUSIONS

The incommensurate spin ordering properties and the
phase diagrams of the single-layer LSCO and of the double-
layer YBCO are very much different, see Fig. 1. Neverthe-
less the underlying generic physics is the same and the spin-
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spiral theory explains quantitatively both phase diagrams.
The theory explains also the difference in the incommensu-
rate pitches, see Fig. 9. Material specific details are driven by
the intrinsic disorder in LSCO and by the bilayer structure in
YBCO.

The present analysis allows making an observation that
the superconductivity is intimately related to the incommen-
surate spin ordering. In LSCO this relation is masked by the
intrinsic disorder; superconductivity is impossible in the
strongly localized regime and therefore onset of supercon-
ductivity is determined by percolation. However, in YBCO
the correlation between superconductivity and incommensu-
rate spin ordering is clear; the critical concentration for onset
of superconductivity practically coincides with that for onset
of the incommensurate spin order.
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